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ABSTRACT  
Building performance database (BPD) including building energy factors and the 
corresponding energy use data is an important research basis of building energy 
prediction for building design optimization and operation performance. Given the lack 
of a general building energy survey database, most of researches have chosen building 
simulation tool to obtain a targeted database as a basis for building energy prediction 
model development. Under the restriction of calculation time with building energy 
simulation tools, they can only focus on part of building factors to decrease the 
computational cost as much as possible. Moreover, current sampling and experiment 
design methods have limited sampling proportion. The efficiency and the 
dimensionality of these methods are not enough for the whole design space of building 
energy consumption with dozens of variables including weather conditions, building 
envelope, occupant behavior, HVAC systems, etc.  
Given that, this study proposes a hybrid space filling design method combining the 
high-dimensional clustering method with the existing statistical sampling method to 
design the variables and cases for a BPD of office buildings. With this method, we can 
build a BPD only including about 10,000 cases but having the capability of representing 
the high-dimensional space constructed by 16 building energy variables at 3-6 levels. 
Relative to common statistical sampling method, the proposed method has higher 
sampling efficiency, and can help researches having many targeted variables to 
decrease the calculation cost and the following data mining complexity. 
Based on the proposed cases design, we use jEPlus to conduct batch case calculation. 
The variables of massive cases and the corresponding outputs (building energy 
consumption) constituted the target BPD, that will contribute to effective building 
performance benchmark and assessment. In addition, the BPD can be used as the data 
basis of model development for office building energy prediction. 
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INTRODUCTION 
Building energy prediction is the important basis of building energy efficiency design, 
energy performance optimization and energy retrofit evaluation, in which a variety of 
building energy prediction models are widely used in recent years. Nowadays the 
methods of building energy prediction mainly include forward simulation and data-



driven models. In the complex application of the two methods, valid training database 
and suitable variables are essential to accurately predict building energy consumption. 
Strictly speaking, the best data comes from actual measurements, such as the 
Commercial Building Energy Consumption Survey (CBECS) (Lee SH et al. 2015). 
However, the available actual data is very limited. This situation conflicts with the high 
requirements of modelling data for existed methods, especially the data-driven method. 
Given this, many researches take the advantages of forward simulation tool to establish 
some targeted building performance databases (BPD) through massive calculations 
(Lee SH et al. 2015, Amiri SS et al. 2015).  
A BPD is commonly comprised of large-scale building cases, and each of them is 
identified with multiple building variables and the simulated/measured building energy 
consumption. As the important basis of building energy assessment and prediction, a 
useful BPD needs to cover as many possibilities as possible to ensure the trained model 
performance. At present, there are two ways to construct a BPD to reflect the complex 
mapping relation between a variety of building factors and building energy 
consumption (Lee SH et al. 2015, Ivan K. 2013). The first way utilizes supercomputers 
to directly complete magnanimous calculation. Without consideration of efficient case 
design, this type of research commonly applied the exhaustive method to implement an 
ergodic process among the range of targeted building factors, which caused extremely 
large amounts of cases to simulate. The second way applies some experimental design 
or sampling methods to reduce the required number of cases examining the whole 
design space, in which all the possible combinations are distributed evenly within the 
test range. The commonly used sampling methods for BPD establishment include 
Orthogonal Experiment Design (Mao J et al. 2016), Monte Carlo method (Amiri SS et 
al. 2015, Kim Y et al. 2014.), and Latin Hypercube Sampling (Asadi E et al. 2014). 
This way selected certain combinations of building factors to represent the full factorial 
space so that the corresponding computational expense is acceptable. Obviously, the 
second way is more efficient and practical. While, it needs reasonable case design to 
ensure the representational capability of the built BPD.  
Owing to the limited efficiency of the direct sampling using experimental design 
methods, existing BPDs in the building energy prediction researches mostly focused on 
partial building factors, such as a certain region (Yang L et al. 2015), a certain HVAC 
system (Neto AH et al. 2008) or a specific building. If not, the calculation cost is too 
high to implement easily. In this case, the research basis of predictive models varies for 
different case. The corresponding prediction models and conclusions are circumscribed 
and have little reference value to similar researches.  
Given the above situation, a more reasonable case design process of the BPD 
construction is crucial for its general application in the building energy prediction and 
performance optimization field. Taking into account both efficiency and 
comprehensiveness of a BPD, this study focuses on the full-scale office building factors, 
and proposes a hybrid space filling design method, combing high-dimensional space 
metrics with common experimental design, to achieve the case design plan of an office 
BPD. Based on this plan, a parallel building energy simulation tool is used to generate 
and simulate almost 10,000 cases in batches. Within high-dimensional mixed building 



variables and the corresponding multiple time-scale building energy consumption, this 
database can basically reflect the complex mapping relation between building factors 
and building energy consumption. It can be utilized as a general data basis for building 
energy prediction, optimization design and benchmark evaluation of office buildings. 
 
METHODS  
The construction of the general BPD mainly includes three steps, primary variables 
design, case design, and the parallel simulation process, which are detailed below. 
Particularly, we proposed a hybrid space filling design method based on high-
dimensional space metrics for the more reasonable and effective case design. 
 
Primary variables design 
To guarantee sufficient representativeness of the target BPD, the variables design needs 
to cover as many building factors as possible. After eliminating some factors with less 
flexibility or high co-correlation from overall factors of office buildings, we primarily 
summarized 16 building energy variables related to weather parameters, building shape, 
envelope, internal load, HVAC system and operation schedule as the primary variables 
of the BPD. For the convenience of the following case design, we divided them into 
two groups, numerical and non-numerical variables, see Table 1. The range of each 
variable is determined by ASHRAE or domestic codes and actual building situation. 
 

Table 1. Primary variables design for BPD 
Numerical 
variable  Description  Range  Non-numerical 

variable  Description  Range  

v1_sat Summer average 
temperature/℃ 16.0~31.0 

v13_HVAC 

All zones:CAV A0 

v2_wat Winter average 
temperature/℃ -11.0~23.2 All zones:VAV A1 

v3_tat Transition average 
temperature/℃ 4.5~24.9 All zones:FCU+OA A2 

v4_sarh Summer average relative 
humidity 0.28~0.88 Inner :VAV 

Perimeter:FCU+OA A3 

v5_bsc Building Shape 
Coefficient 0.10~0.50 All zones:VRV A4 

v6_wwr Window wall ratio 0.10~1.00 

v14_plant 

CentiChiller & Boiler P0 

v7_ohtc Overall Heat Transfer 
Coefficient, OHTC, w/m2 5.0~35.0 ScrewChiller & 

Boiler P1 

v8_lpd Lighting power density, 
w/m2 10.0~20.0 Absorption chiller& 

Boiler P2 

v9_ppd People power density, 
m2/p 2.0~10.0 Ground source heat 

pump P3 

v10_epd Equipment power density, 
w/m2 10.0~20.0 Air source heat pump P4 

v11_sidt Summer Indoor design 
temperature/℃ 22.0~28.0 CentiChiller & Heat 

pump  P5 

v12_widt Winter Indoor design 
temperature/℃ 15.0~22.0 v15_tspt Variable speed 

pumps Y/N 

   v16_schd Operation schedules High/Std/Low 
usage 

 



Case design 
Taking inspiration from space filling design method, we introduced high-dimensional 
clustering as the deterministic part, and applied the common sampling as the 
randomized part. The two parts constituted the proposed hybrid space filling design 
method for the case design of the 12-Dimensional (12-D) numerical variables.  
In the clustering process, high-dimensional space metrics are regarded as the key 
criterion for the clustering partition of the 12-D variable space. If the number of levels 
for each numerical variable is 3, the number of the overall cases by full permutation 
will be almost 530,000. We regarded a case having 12 variables as a data point in the 
high-dimensional space. All the cases construct a high-dimensional variable space. By 
means of space clustering, they are divided into 1,500 case clusters according to 
common sampling proportion.  
Based on the case clusters, the Monte Carlo (MC) sampling method is used to 
stochastically select the numerical variable combination of the BPD case design from 
the cluster centres. Taken the centre of a cluster to represent its position in the high-
dimensional space, we condensed the original space to a simplified space with lower 
resolution and the basic distribution features. By means of random sampling, about 65 
numerical variable combination are achieved under the common sampling proportion 
of Monte Carlo method.   
Simultaneously, given the discrete property of other four non-numerical, they are fully 
permutated along with the above 65 numerical variable combinations to obtain the final 
case design plan for the BPD, as shown in Figure 1.  
 

Figure 1. Case design plan for BPD 
 
Obviously, the clustering process is the key of hybrid case design. Clustering is the 
most important application of high-dimensional space metrics in the machine learning 
filed. Generally speaking, space metrics can be categorized as four types: (1) Norm 
distances, (2) Cosine distance, (3) Weighted distances, and (4) Other similarity 
distances, the algorithms of which are listed in Table 2. Due to the complexity of 12-D 
space distribution, it’s difficult to directly choose a suitable metric for the clustering 
process. By comparing the different distribution of case clusters under different high-
dimensional clustering metrics, the most suitable metric is determined to get reasonable 
12-D space partition. 
 

Table 2. Common high-dimensional space metrics 
Category No. Metric Algorithm 

Norm 
distance 

1 Minkowski distance DP(a, b) = ��|ai − bi|p
𝑠𝑠

𝑖𝑖=1

�
1/p

 



When P=1, named Manhattan distance 
When P=2, named Euclid distance 

When P=∞, named Maximum distance 

2 
Linear combination distance 

(Wang Z et al. 2004) 
αD1(a, b) + βD∞(a, b) 

Cosine 
distance 

3 Cosine distance ra,b =
|∑ ai × bis

i=1 |

�(∑ ai2s
i=1 ) × �∑ bi

2s
i=1 �

 

Weighted 
distance 

4 
Feature weighted metric with 

fuzzy weights  
(Wang J et al.2013) 

Wdist(a, b) = �∑ wh
α(ah − bh)2s

h=1     
α > 1, 0 < wh < 1  

Similarity 
distance 

5 Mahalanobis distance 
DA(a, b) = (𝑎𝑎 − 𝑏𝑏)𝑇𝑇𝐴𝐴−1(𝑎𝑎 − 𝑏𝑏) 

A is the covariance matrix 

6 Lance&Williams distance D(a, b) = ��
ai − bi
ai + bi

�

𝑠𝑠

𝑖𝑖=1

 

 
From the thought of the proposed case design method, it’s observed that the rationality 
of this plan depends enormously on performance of the clustering analysis. There are 
two kinds of evaluation index for clustering results. External index is a generally 
accepted reference partition, which is often impractical. Relatively, the more commonly 
used internal index directly focuses on the similarity of resulted clusters, including 
intra-cluster similarity (also called within-class divergence) and inter-cluster similarity 
(also called between-class variation). Good clustering makes birds of a feather flock 
together as much as possible, which means both the higher intra-cluster similarity and 
the lower inter-cluster similarity. Here, we used the most common K-means clustering 
method based on Euclid distance and the clusters similarity based on correlation 
coefficient separately as the external reference and internal index to illustrate the 
validity of the clustering process. 
 
Parallel simulation process 
Based on the above case design plan, we specified the 16-D building variables for each 
case in the targeted BPD. Besides, the building energy consumption for each case is the 
other crucial part of a complete BPD. In this study, we applied a java compiled tool-
jEPlus for batch production and simulation of the almost 10,000 designed building 
cases to obtain the corresponding building energy consumption of the BPD. 
JEPlus is an open source tool initially developed for managing complex parametric 
simulation using EnergyPlus (Zhang Y 2009). Parametric analysis using jEPlus 
provides a convenient and highly efficient way to perform optimisation for building 
design and operation. jEPlus uses a tree structure to organize the analysed parameters 
and their values, as well as the batch definition and generation of all the models. Then 
it drives EnergyPlus engine to execute the parallel multi-core computing and the 
building energy consumption collection afterwards.  
 



RESULTS 
According to the proposed BPD construction method, this section orderly implemented 
the four steps: (1) High-dimensional space clustering partition, (2) Numerical variable 
combination sampling, (3) Clustering performance evaluation, and (4) BPD simulation 
and construction. 
 
High-dimensional space clustering partition  
This step compares five different high-dimensional metrics in the 12-D space clustering. 
From the distribution of case number included in clusters, as listed in Table 3, it’s 
obvious that the clusters by LCDist have well-proportioned distribution with the lower 
root-mean-square error (RSME), skewness and kurtosis. So LCDist was selected as the 
suitable clustering metric. With it, most of (80%) clusters include 200~400 cases. The 
best clusters present slight right-skewed distribution. 
 

Table 3. Distribution of Case clusters 
Metrics  Average  Medium RSME Skewness Kurtosis  

Lance&Williams (LanDist) 304 281 191 0.71 0.22 
Mahalanobis (MaDist) 304 282 151 0.74 0.23 

Euclid (EuDist) 304 282 150 0.75 0.27 
Cosine (CosDist) 304 276 174 0.76 0.46 

Linear Combination (LCDist) 304 287 136 0.64 0.09 
 
Numerical variable combination sampling 
Appling the MC sampling to the cluster centres, the numerical variable combinations 
are obtained. To ensure the computability of BPD cases that have physical significance, 
the seasonal weather parameters in the obtained 12-D variable combinations are 
matched with all the practical cities in the northern hemisphere. Then the typical 
meteorological year (TMY) of the matched practical city can be used as the hourly 
weather data input of that case. After the matching process, it’s observed that the 
obtained 12-D variable combinations can cover the main climate zones defined by 
ASHRAE, see Table 4. And that, the deviations of the weather data between the BPD 
cases and their matched cities is less than 0.8oC, which is acceptable. 
 

Table 4. Climate zone coverage of BPD cases 
Climate zones Representative city Climate feature Matched cases 

2A Jacksonville, Florida, USA Hot-humid 8 
2B Cairo, Egypt Hot-dry 9 
3A Shanghai, China Warm-humid 11 
3B March. AFB, California, USA Warm-dry 6 
3C Kunming, Yunnan, China Warm-marine 7 
4A Lyon, France Mixed-humid 8 
4C Zhengzhou, Henan, China Mixed- marine 8 
5A Shenyang, Liaoning, China  Cool-humid 11 
5B Denver, Colorado, USA Cool-dry 5 
6A Toronto, Canada Cold-humid 5 
6B Urumqi, Xinjiang, China Cold- dry 3 

 



Clustering performance evaluation 
The external reference for clustering performance evaluation is the common K-means 
clustering partition with EuDist as the space metric. To test its stability, we did the K-
means clustering twice with different initial centres for its iterative process. The 
comparison of the proposed LCDist clustering and the twice K-means clustering 
showed that, see Figure 2, the EuDists of the three batch of cluster centres are 
distributed similarly and have a narrow range (mainly 0.3~0.5), which means the 
differences of them are acceptable and the proposed clustering results are accurate.  
 

 
Figure 2. Distance distribution of cluster centres among the proposed and reference 

clustering partition 
 

The internal index is the correlation coefficient of 12-D variable combinations. The 
correlations among 12-D cases included in the same cluster reflect the intra-cluster 
similarity, and those among 12-D cases included in the different clusters reflect the 
inter-cluster similarity. We found that the intra-cluster similarity of most clusters are 
0.7~0.8, highly relevant, and the most inter-cluster similarity are less than 0.5, basically 
irrelevant. It explained that the proposed clustering process is validate.  
 
Office BPD simulation and construction 
The obtained 65 12-D numeric variable combinations using the hybrid space filling 
design method are then fully permutated with other 4 non-numeric variables to get the 
16-D building inputs of the BPD models. After the two months’ parallel simulation by 
jEPlus, this study constructed the BPD comprised of 9,750 building cases having high-
dimensional mixed building variables and the corresponding multiple time-scale 
building energy consumption. Every case is uniquely identified with an ID. Its building 
variables include weather parameters, building shape, envelope, internal load, HVAC 
system and operation schedule. The results include whole building energy consumption, 
sub-metering consumption (e.g. cooling, heating and lighting etc.) and daily 
consumption. The high-dimensional space forming by the BPD basically reflects the 
complex relation between building factors and energy consumption of office buildings. 
 
DISCUSSION 
With consideration of the full-scale building factors, this study aims to establish a more 
general BPD for office building energy prediction and performance optimization by 
proposing an effective case design method. Given the high-dimensional and mixed 
features of building variables, several building variables are certainly simplified to 
balance the construction complexity and application universality of the BPD. The range 
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of building variables including building shape, operation schedules, and energy system 
parameters just cover some typical types and couldn’t include more segmentation.  
The building shape in the BPD have two common types of rectangle and square office 
buildings. By comparing building energy models of different shapes, we found that the 
error of building energy consumption driven by other building shapes beyond the BPD 
scope, like L-shape, is about 5%.  
According to existing standards, the BPD includes three usage levels of hourly 
operative schedules for different internal loads, like occupancy, lighting, equipment, 
and HVAC indoor set-point, as three operation scenarios. Assuming no obvious 
difference on commuter time of general office building, the difference of three 
scenarios is mainly reflected in the hourly usage profile in the working period. This 
simplification couldn’t cover the complex effects of practical occupant behavior on 
building energy consumption.  
As to the energy system variables including HVAC and plant system, the case design 
process of the BPD models just specified anyone of common system types. In the 
parallel simulation process, the detailed parameters of each system, like capacity and 
efficiency, basically use the default or general values. For the capacity of energy 
sources, certain adjustment of the BPD models is conducted to decrease the zone not-
meet hours to less than 300, so that the BPD cases are reasonable and close to actual 
buildings as much as possible.  
 
CONCLUSION AND IMPLICATIONS 
Given the limitation of existing BPDs and their construction methods, this study 
proposed a hybrid space filling design method with combination of high-dimensional 
space clustering and stochastic sampling to develop an efficient case design plan for a 
comprehensive BPD of office building. Having high-dimensional mixed building 
variables and the corresponding multiple time-scale building energy consumption, the 
BPD can be utilized as the data basis for building energy prediction, optimization 
design and benchmark evaluation of office buildings. Besides, the proposed case design 
method integrated high-dimensional space metrics, space filling design with traditional 
experimental design to achieve more efficient BPD construction. Theoretically 
speaking, the method is suitable for other simulated databases with restriction on both 
variable dimensionality and computation scale, to decrease the calculation cost and the 
following data mining complexity.       
An important note about this study is that it is part of the research on exploring 
necessary building variables for building energy prediction models of office building. 
As the main result of this study, the constructed BPD is going to be the data basis for 
the next part of the mentioned research. The BPD can provide the analysis basis for 
figuring out the complex relationship between building variables and energy 
consumption used in building energy prediction models. 
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